
locally hosted Kubernetes K8 cluster using Containerd, connected to Portainer container for
management via Web GUI

Completed

Host Architecture
Creating the Cluster
Portainer Web GUI - Environment Connection
Lessons Learned & Reflection

K8 Cluster Creation
+ Portainer GUI

To get started with Kubernetes, I chose Ubuntu 22.04 Server LTS to use as my host OS. I chose this
as I'm most familiar with this and figured it would make learning much smoother.

Kubernetes doesn't require high spec machines for your nodes. Thats the best part! At the
minimum, you'll want your nodes to have 2GB of RAM, and 2 CPU Cores. This is the minimum, and
you can always scale this as needed.

You will need to assign static IPs to your nodes. I've used DHCP Leases through my OPNsense
firewall, but you can also do this within the netplan directory of your machines if you don't have
access to your router.

Host Architecture
Host Operating System

VM Specs (RAM, CPUs, Storage, etc)

Network Configuration

I created my nodes by making clones from an Cloud-init template of an Ubuntu server that I set up.
To check out how I created a template with Ubuntu Cloud Images and cloud-init on Proxmox, check
out my Proxmox VM Book.

After getting getting my Ubuntu Servers up and running, installing qemu-guest-agent, and
upgrading all packages, I took a snapshot of the VM to have something to rollback to incase I mess
up at any point. Taking snapshots is a great practice especially when learning new technologies, as
it saves you time from recreating from scratch and allows you to roll back to certain states you
save. The following are steps I took on my Master-Node to configure and prepare my nodes for my
Kubernetes Cluster.

After establishing my SSH connection to my server, I followed the steps outlined below and ran the
corresponding commands to configure my VMs

Kubernetes does not get along with swap enabled, so I need to disable it. To do this, I ran the
command in my terminal window to temporarily disable swap:

Next, I ran the command to edit the fstab file and comment out and keep swap turned off even
after reboots:

To confirm I've done this correctly, run the command to view swap usage:

Creating the Cluster
Configurations

VM Set Up and Initial Configurations
Disable Swap

sudo swapoff -a

sudo nano /etc/fstab

free -m

https://austinhomelabs.com/books/virtual-machines/page/ubuntu-2204-template-with-cloud-init
https://austinhomelabs.com/uploads/images/gallery/2024-04/DmxnjrdRuZw3Z4gO-image.png

Your nodes will each require a static IP or Static DHCP lease. I've set up Static Leases for all of my
nodes via OPNsense. To assign static IPs directly on the server, you'll need to edit and make
changes to the .yaml file in the netplan directory.

You'll also need to make sure each VM node has been assigned a hostname. Run the command to
view your hostname:

Kubernetes requires a container runtime. I'll be using Containerd. To get started with this, update
all your packages and then run the following command:

Check that the service is running by following command:

After confirming it's running, create a new directory for containerd within /etc by running the
following command:

Next, write the default configuration to containerd by running the following command:

Now, use whatever editor you like, I use nano, and edit the config file. Search for runc.options
within the file, and change the systemdCgroup value to true:

Hostnames Static IP or Static Leases

cat /etc/hostname

Install Container Runtime (containerd)

sudo apt install containerd

systemctl status containerd

sudo mkdir /etc/containerd

containerd config default | sudo tee /etc/containerd/config.toml

https://austinhomelabs.com/uploads/images/gallery/2024-04/cAzfzCfFpzwxogmI-image.png

Enter Ctrl+W to search within the file for runc.options and change the SystemdCgroup value

Run the following command to edit the sysctl.conf file:

Find the line that enables packet forwarding for IPv4 and uncomment it so it can be read by the
system:

This allows your nodes to communicate with each other and is crucial to get your cluster to work

The next file to edit is the k8s.conf file. Run the following command:

This is a blank file. Add "br_netfilter" and save the file:

The bridge netfilter essentially ensures that network bridging is supported throughout the cluster.
After this is done. reboot your VMs.

sudo nano /etc/containerd/config.toml

Systemctl.conf Configuration

sudo nano /etc/sysctl.conf

k8s.conf Configuration

sudo nano /etc/modules-load.d/k8s.conf

https://austinhomelabs.com/uploads/images/gallery/2024-04/cEmNexMdEaxyEpiZ-image.png
https://austinhomelabs.com/uploads/images/gallery/2024-04/c9jSFQmu7eTjkK6d-image.png
https://austinhomelabs.com/uploads/images/gallery/2024-04/jmaBTeNVObDGqPxm-image.png
https://austinhomelabs.com/uploads/images/gallery/2024-04/HOGv8trvxTmycWBJ-image.png

With our VMs running, we can now install Kubernetes packages. To do this, we'll need to add the
Kubernetes repository gpg key and then install the repository itself. Then we can run the
commands to install kubeadm, kubelet, and kubectl.

Run the command to install necessary packages in order to use the Kubernetes apt packages:

You might not have to install these commands, but I ran it as a precautionary measure

Run the command to make sure you have the "keyrings" directory prior to downloading the public
signing key:

If you don't have this

directory create one with the mkdir comamnd

Download the public signing key for Kubernetes package repositories. I'm downloading the most
current stable release v1.29:

Run the command to add the Kubernetes apt repositories:

Kubernetes Installation

Install Kubernetes using Native Package Management

sudo apt-get install -y apt-transport-https ca-certificates curl

ls -l /etc/apt

curl -fsSL https://pkgs.k8s.io/core:/stable:/v1.29/deb/Release.key | sudo gpg --dearmor -o
/etc/apt/keyrings/kubernetes-apt-keyring.gpg

echo 'deb [signed-by=/etc/apt/keyrings/kubernetes-apt-keyring.gpg] https://pkgs.k8s.io/core:/stable:/v1.29/deb/
/' | sudo tee /etc/apt/sources.list.d/kubernetes.list

Run the commands to update and upgrade apt repository and packages, and then install
Kubernetes:

At this stage. we now have a node that is properly configured and has the Kubernetes packages
installed. I created a template of this VM so that in the future, I can add nodes to any cluster much
faster and skip all of this configuration and initial set up. It's relatively simple to do this in Proxmox,
but first, we'll want to clean up our VM so that configurations like static assignments and machine-
id won't get cloned. Run the following commands to do so:

First, clean cloud-init with the following command:

Remove the instances in the cloud repository by running the following command:

Next, reset the machine-id (this avoids having your clones use the same static IP) by running the
following command:

Remove the machine-id in the dbus directory by running the following command, and then create a
symbolic link by running the following commands:

You can confirm this is done with ls -l and then power off this VM and and convert it to a template.

From my template, I've created 4 clones:

k-ctrlr
k8-n1
k8-n2
k8-n3

sudo apt-get update && sudo apt-get upgrade
sudo apt-get install -y kubectl kubeadm kubelet

Create Worker Template Node (optional)

sudo cloud-init clean

sudo rm -rf /var/lib/cloud/instances

sudo truncate -s 0 /etc/machine-id

sudo rm /var/lib/dbus/machine-id
sudo ln -s /etc/machine-id /var/lib/dbus/machine-id

Initialize Pod Network on your Controller Node

My cluster will have 1 Controller node, and 3 worker nodes. The specs for my nodes are as follows:

Controller
4 Gb RAM
4 CPU Cores

Worker
2 GB RAM
2 CPU Cores

After powering up the node vms, ensure they have static IPs, or assign Static leases in your router
(OPNsense in my case).

To initialize the following command, run the following command after editing certain parameters:

For --control-plan-endpoint, edit this to make it your Controller Nodes IP. In my case, I've
assigned k-ctrlr 192.168.2.39
For --node-name, enter your Controller Node's hostname, in my case it is k-ctrlr
Leave pod network the same. Changing this is possible, but will require additional
configurations.

After initialization, you'll see the following output, which contains commands including keys and
tokens to add nodes to the cluster:

I've greyed out my tokens and hash value. Save these in a .txt file or somewhere
accessible as we'll be using this in the near future to join our other 3 nodes to the cluster.

To complete this initialization and to allow yourself to control your cluster as a regular user run the
following commands:

sudo kubeadm init --control-plane-endpoint=192.168.2.39 --node-name k-ctrlr --pod-network-cidr=10.244.0.0/16

https://austinhomelabs.com/uploads/images/gallery/2024-04/bOOwGZrPe9BoZDxH-kubeadminit-cmd.png

After doing this, your cluster has been initialized and is almost ready to add nodes.

After you initialize your Controller node, run the command to view your pods:

You'll notice that the coreDNS is pending. Kubernetes clusters require a Container Network
Interface (CNI) based Network Add On. I used flannel, but there are plenty of options to choose
from and can be found in the Kubernetes Install Docs.

To install and apply the add on run the following command:

If using flannel, check out their github repo and the ReadME.txt for more installation instructions.

When adding nodes to your cluster, you'll need the tokens saved during initialization to run
commands in your worker nodes windows. If you don't have these, you can generate new tokens
with the following command:

If joining nodes after 24 hours since token creation, you'll need to generate new tokens

Run the following command in each of your Node terminal windows:

Replace 192.168.2.39 with your controller nodes Static IP
Replace entertokenhere with your token you generated
Replace hashvaluehere with the sha256 value you generated

The node will run some checks and will then join the cluster:

mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config

Overlay Network

kubectl get pods --all-namespaces

kubectl apply -f <add-on.yaml> is the command
I ran the command below to install Flannel
kubectl apply -f https://github.com/flannel-io/flannel/releases/latest/download/kube-flannel.yml

Adding Nodes to Cluster

kubeadm token create --print-join-command

sudo kubeadm join 192.168.2.39:6443 --token entertokenhere --discovery-token-ca-cert-hash hashvaluehere

https://kubernetes.io/docs/concepts/cluster-administration/addons/#networking-and-network-policy
https://github.com/flannel-io/flannel#deploying-flannel-manually

To confirm it's joined your cluster and check your node statuses, run the following command in
your Controller Node:

You can now see the Name, Status, Role, Age, and Kubernetes version being run

Your cluster is now created and ready for you to launch and work with whatever services you'd like!
Check out the next page to see how I connected this cluster to my Portainer docker container!

kubectl get nodes

https://austinhomelabs.com/uploads/images/gallery/2024-04/aHdRLkhBMoufunN1-image.png
https://austinhomelabs.com/uploads/images/gallery/2024-04/49wO2pOJcR77GTSV-image.png

With my K8 cluster now set up, I'm going to connect this cluster to my Portainer container running
in my local Docker engine on another VM I have in Proxmox. For more details about my Portainer
set up, check out my Docker Containers book. Portainer is a Web GUI container you can use for
Kubernetes and Docker management, and it'll allow me to manage and deploy containers and
clusters. See below to view how I set up my connection:

Portainer Agent

To connect this cluster, I'll be deploying a Portainer Agent onto the cluster. To do so, run the
following command in any node of your cluster:

With this installed, check the status of the agent by running the following command:

Now, open up your Portainer GUI in the web browser and navigate to Environment ---> Add. Select
Kubernetes and start the wizard:

Portainer Web GUI -
Environment Connection

kubectl apply -f https://downloads.portainer.io/ce2-19/portainer-agent-k8s-nodeport.yaml

kubectl get pods --namespace=portainer

https://austinhomelabs.com/books/docker-containers/chapter/portainer
https://austinhomelabs.com/uploads/images/gallery/2024-04/70hUCfZsKxZQE756-agent-install.png
https://austinhomelabs.com/uploads/images/gallery/2024-04/HKs5nKiPdxi7L64o-image.png

Next, enter your node IP address and specify port 30778. I'm using NordPort so 30778 applies; if
you're using load balancer then use port 9001:

https://austinhomelabs.com/uploads/images/gallery/2024-04/ItZ3l6R5gK0MZ7NY-image.png

Your cluster should now connect, load, and be added to your dashboard:

Select "Live Connect" to view your cluster resources:

https://austinhomelabs.com/uploads/images/gallery/2024-04/rpxy6lmpFj8EQdeW-image.png
https://austinhomelabs.com/uploads/images/gallery/2024-04/EXoCDvWzGmqP6BXA-image.png

The cluster is now connected to Portainer and can be managed via the Web GUI!

I decided to start learning Kubernetes by building my own cluster. If you're familliar with any type
of DevOps environments, then you know how important it is to understand and orchestrate
Kubernetes clusters. I took my normal approach to learning new things, and dove in head first. I
like to learn things hands-on, which is why I built a homelab: I can experiment, break things, build
things, and not have to worry about it ruining or messing with day-to-day "critical" services I use.

Normally, when it comes to learning new technologies, I've been able to find well structured and
thorough guides on how to do so. However this time was much different than previous experiences.
Any guides or tutorials I could find were outdated, which is expected as Kubernetes updates are
always being pushed out. The Official Docs were great in explaining all of the components, but the
installation wasn't the clearest. and I definitely messed up my VMs and had to restart a couple of
times. More than a couple. The biggest takeaway I've learned from this experience is creating
snapshots at important stages. I've wasted plenty of time by making mistakes, then not being able
to undo them and having to rebuild and reconfigure new VMs. With snapshots, I could just rollback
to my last-saved image state and instead of having to start from scratch, I could start from 1-2
steps from where I just was. Snapshots for me, was game changing.

Another important takeaway from this is to not rely on one source for directions, especially if its not
the official documentation. I ended up piecing together different prep/build stages from 4-5
different sources/tutorials/instructions. Not everyone has the same environment or set up, and
what works for them won't necessarily work for you. Learn the ins and outs of your environment
and what you're trying to implement, and then adjust and adapt accordingly.

With my first locally hosted cluster set up, I'm ready to start hosting some services and running
containers with Kubernetes. For my first project, I'll be launching TheHive Project, and open-source
SIRP that runs alongside a Cortex Analytics engine. SIRPs are crucial components of InfoSec SOCs
and deploying my own will allow me to learn a lot about how they work, how they're used for case-
management, and how they can be improved. Check out my next book on TheHive project to see
how I deployed it, the configurations I've made, and how you can do it yourself!

Useful Sources

Creating a cluster with kubeadm | Kubernetes
Installing kubeadm | Kubernetes

Lessons Learned &
Reflection
Takeaways

https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/create-cluster-kubeadm/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm/

Ports and Protocols | Kubernetes
flannel-io/flannel: flannel is a network fabric for containers, designed for Kubernetes
(github.com)

https://kubernetes.io/docs/reference/networking/ports-and-protocols/
https://github.com/flannel-io/flannel#deploying-flannel-manually
https://github.com/flannel-io/flannel#deploying-flannel-manually

